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INTRODUCTORY.

§ 1. The object of the following work is to make some progress with the mathe-
matical representation of the motions which go to compose natural light.

§ 2. It has always been recognised that interference phenomena forbid us to regard
any natural radiation as consisting of an unending train of simple waves, such as may
be represented by sine functions. At the same time, the equations of optics find
their simplest solution in circular functions. It is desirable to enquire how far we
may resolve a natural luminous motion with a sum of simple wave-trains by means
of Fourter’s “ Theorem of Double Integrals.” This procedure was first suggested by
Gouvy.* A

§ 3. Doubts have often been entertained as to the permissibility of this process.
Writers have been sceptical as to the physical meaning and independence of the simple
waves thus introduced. In the following pages will be found an attempt at a strict
justification of the method. It is based upon two principles (i.) that we are cognisant
of light only by means of the integral effects produced by the light during an
interval of time which depends upon the nature of the detector in use (the eye, a
photographic plate, &c.) ; (ii.) that we are not concerned with simple wave-lengths,
but rather with short ranges of wave-length, whose integrated energy we observe.
The former principle is generally accepted ; the latter has been put forward with great
force by Lord RAYLEIGH. {

§ 4. In what follows we shall deal solely with plane and plane-polarised light.

§ 5. The matter at issue cannot be introduced better than by a quotation from
Gouvy] :—

“On sait que la théorie ondulatoire, dans les explications qu'elle donne des
phénomenes optiques, a pour objet immédiat le mouvement simple, dans lequel la
vitesse vibratoire| d'un point quelconque est donnée par une équation de la forme

. [t
v = ¢ 8in 27;-(5 + b>

* (touy, ¢ Journ. de Physique,” ser. 2, vol. 5, p. 354. (1886.)

t Lord RAyLEIGH, ¢ Phil. Mag.,” vol. 27, 1889.

1 Gouy, ‘J. de Ph, ser. 2, vol. b, p. 354.

I Tt is clearly immaterial whether we speak of velocities and displacements of an elastic medium, or of
electric and magnetic forces, The real objects of discussion are vectors, which can be interpreted in
various ways,

2 U2
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332 MR. C. GODFREY ON THE APPLICATION OF FOURIER’S

t désignant le temps, «, b, et 6 des constants. Cette équation définit une suite
entitrement ¢limitée de vibrations pendulaires, dune régularité absolue, dont la
période est 0.

“Si ces conditions de regularité et de durée ne se trouvent pas rigoureusement
réalisées, I'équation du mouvement est différente, et, par suite, un probléme nouveau
se trouve posé, la solution fournie par la théorie pour un mouvement simple n’étant
plus applicable en général. Sil gagit, par exemple, d'un phénomeéne d’interférence
ou de diffraction, on voit immédiatement que toute irrégularité et toute interruption
entraine une perturbation dans Teffet produit, comme on Ta remarqué depuis
longtemps. Il en sera encore de méme, abstraction faite des interférences, toutes
les fois que lon aura & considérer des milieux doués de dispersion. En effet, le
mouvement vibratoire dansles divers milieux devant toujours satisfaire aux équations
différentielles des petits mouvements de ces milieux, il n’est nullement permis de faire
subir une altération, quelle qu'elle soit, au mouvement vibratoire (i.) et de supposer
en suite que ce mouvement se comportera, dans les milieux doués de dispersion,
comme 871 n’était pas altéré. Ainsi, par exemple, on n'est pas en droit de supposer
que le mouvement (i.) ne comprend quun nombre de vibrations limité, et qu'il
se propagera dans les divers milieux comme s'il formait la suite entitrement illimitée
que definit I'équation (i.).

“ D’autre part, on a remarqué depuis longtemps qu’aucune source lumineuse ne peut
produire une série de vibrations indéfinie et parfaitement réguliere, ne flit-ce qu'en
raison du renouvellement incessant des particules incandescentes. Ainsi aucun
mouvement lumineux réel, méme le moins complexe qu'on puisse supposer, ne rentre
rigoureusement dans le cas du mouvement simple que considére la théorie ondu-
latoire. :

“(Cette difficulté est présentée dés lorigine de cette théorie. On y répond
d’ordinaire en supposant que les sources lumineuses produisent des séries de vibra-
tions régulidres, mais troublées de temps & autre par des perturbations subites ou de
courte durde. Si la série, entre deux perturbations, comprend un grand nombre de
vibrations, on peut prévoir que l'effet moyen d'un pareil mouvement différera peu de
celui d'un mouvement simple. Mais cet apercu, reposant sur une hypothese, ne peut
servir de base & une étude rationnelle du probleéme qui nous occupe, et nous verrons
que, pour les sources donnant des spectres continus, on peut se faire une idde
beaucoup moins étroite au mouvement lumineux. De plus, cet aper¢u ne nous
apprend rien sur les effets des perturbations elles-mémes, qui paraissent jouer un role
important dans la constitution des spectres fournis par les vapeurs et les gaz
incandescents.”

§ 6. The general process to which Gouy alludes is the analysis of any disturbance
whatever by means of FOURIER'S theorem. He considers a function which is defined
within a given interval of time ; this is analysed into a sum of circular functions of
time ; the periods of the terms being the interval itself and all sub-multiples of it,
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DOUBLE INTEGRALS TO OPTICAL PROBLEMS. 333

It seems unnecessary to restrict the function by defining it for a finite interval alone.
We may at once discuss a motion given for all values of the time, from — o to 4 oo.
By the theorem of Fourier’s double integrals™

@

(1) = § (Ccosut + Ssin ut)du

0
0 ’ 1 L
y . - — mn y
where C= [ f(v)cosuvdu, S = ;;j S(v) sin wodw.
The disturbance is thus analysed into a sum of elementary simple vibrations, of

which
du(Ccos ut + S sin ut)
s typical.

Each of these is a simple circular function ; the results of the undulatory theory
are directly applicable to it.

The periods of the elementary vibrations have all values from zero to infinity.
Now, if the disturbance could be analysed as a number of simple circular functions
with distinet periods, the separate elements would have meaning, as in the familiar
harmonic analyses of tides, vibrations of musical instruments, &c. The question we
have to answer is, have the simple elements meaning in the limit, when their number
is infinite, and the sum becomes an integral ?

§ 7. We will at once notice an obvious criticism; this was, in fact, offered by
Poincarg, T soon after Gouy’s article appeared. Each of the component vibrations
du(C cos ut + S sin ut) exists unchanged through all time. This is true whatever
be the nature of the disturbance we are analysing. But this disturbance may,
for instance, be zero, except within a certain definite interval of time. Take the case
of a flash of light. Now a spectroscope, says M. PoiNcarg, will separate the
component vibrations laterally ; they may be examined separately. Hence a spectro-
scope will enable us to see the light for an infinite time before it is kindled, and for
an infinite time after it is extinguished. The analysis must therefore be fallacious.

The answer to this objection is as follows. No spectroscope possesses infinite
analysing power. A given point at the focus of the telescope will be illuminated by
light of a whole range of periods. Or, to look at the matter from another point of

* On the Applicability of Fourier’s Double Integral to Functions occurring in Physical Problems.—In pure
mathematics the applicability of FOURTER’S theorems to functions is subject to certain limitations. These
limitations exist when the functions possess infinite sets of discontinuities, or infinite sets of fluctuations, or
infinities of certain types. Now, in concrete physical cases, we find neither infinities nor discontinuities.
Tt is true that infinities and discontinuities may occur in functions commonly used to represent physical
quantities. But the presence of such features is due to the abstract character of the method ; a function
more closely realising the properties of the physical quantity in question would he without infinite or
discontinuous features.

T POINCARE, “Spectres Cannelés,” ¢C. R.,” 120, pp. 757-762, 1895 ; also see Scnuster, ¢ C. R, 120,
pp- 987-989, 1895,
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534 MR. C. GODFREY ON THE APPLICATION OF FOURIER'S

view, a perfectly monochromatic train of waves will, by virtue of diffraction,
illuminate, not a point, but a small area of the focal plane. The different elements of
the Fourier integral will not be distinguished separately ; they will to some extent
be superposed and recombine. - The result will be, at each point of the focal plane, a
disturbance not altogether different from the original motion in duration and
character. We see then that the Fourier analysis may after all have meaning and
application, and not lead to a paradox such as PoiNcarg anticipated.

It must be noticed that this recombination of the different elements of the integral
is essentially connected with the phase-relation which exists hetween the said simple
elements.

§ 8. We have seen that Poincari’s objection will not prevent us from regarding
the original ether-motion as mathematically equivalent to the Fourier integral,
Whatever services the Fourier analysis can render us we may safely accept.

It will be found that the different simple elements of the Fourier integral cannot
wn general be said to have any independent physical existence. On the other hand,
part of the following essay is an attempt to prove that in certain cases the different
Fourier elements can be regarded as having such physical existence. A special
case of this nature is that of a steady emission, such as the radiation of an incan-
descent gas. We shall inquire to what extent such radiations are equivalent to
mixed light, presenting a continuous spectrum of composition determined by Fourier
analysis,

The Fundamental Theorem,

§9. We will now introduce a theorem proved hy Professor ScrHUsTER* A par-
ticular case was given by Lord Ravierau.t
The theorem is as follows :—

o0 o

[ And(e)ae = L[ (AA,+ BB,
:: + o
where A= [ J(\) cos uhdA, B, = f J(N\) sin uld)
A, = f &(N) cos uldA, B, = f () sin uhd.

In other words, if

—8

J) =
()

* Professor SCHUSTER, ¢ Phil. Mag.,” vol. 37, p. 533, 1894,
t Lord Rayrriah, ‘Phil Mag.,” vol. 27, 1889,

R cos (ut + 4)du

0

R, cos (ut + y,)du

0

I
— 8
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DOUBLE INTEGRALS TO OPTICAL PROBLEMS. 335

where R, R,, i, ¥, are functions of u,
+oo o

then | Aoyt = [ T 008 (i — )

— 00

The integrated value of f{#)¢(¢) depends therefore upon the distribution of energy
in the separate elements, and upon the difference of phases of corresponding elements
in the integrals.

§ 10. Professor ScHUSTER needs the theorem in order to prove that, in case of a
bifurcated beam of light interfering with itself, “the amount of interference depends
on the distribution of energy only, and not on any assumption respecting the
regularity or irregularity of vibration.” '

The proposition has, however, very much wider consequences.

§ 11. For the present, the discussion will be confined to the particular case of
constant light, 1.e. light which does not present any perceptible fluctuations or other
time-features.

§ 12. All our cognizance of radiation other than the long waves of HEerrz is by
average effects. We average over a length of time great compared with the periods
of vibration. This is true whatever be the means used to perceive and register the
radiations, whether by direct visual perception, or by chemical effect, photographic o
other, or by heating effect (bolometric), or by luminescence which the radiation
excites. For Hertzian waves, on the other hand, the features of a single wave can
be discovered. ,
~ In discussing the qualitative effect of constant light, with a view to discriminating

‘between different wave-lengths, we are concerned solely with the integral effect over
a certain interval of time.

It is doubtful how far we are at liberty to consider the molecule as a simple
vibrator. But, in so far as this assumption is justified, we may prove that the
observed effects of constant light will depend on nothing but the partition of energy
among the different elements of the equivalent Fourier integral. The phases will of
course determine whether the light shall be “constant” or no ; but, if' that condition
is fulfilled, their further influence will not be perceived.

.l.w
§ 13. Energy.—The whole energy of the light motion f(¢) depends upon f F(0)dt

By the theorem of Scruster and RavreiaH, this is equal to

ﬂi Rdu

where /() = J’ R cos (ut + )du.
0 ;
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336 MR. C. GODFREY ON THE APPLICATION OF TOURIERS

Interference with given path difference 2.

This depends on
[ALLA@) + £+ 2005 = 1) = f2e + 20)] = 2[ FOF(E + 2)de

Now { Y cos (ut :)dw

J(t 4+ 21) = { R cos (ut + 2ur + ¥)du,
o
'( F() f(t 4 27)dt = wjﬁ R¥cos 2urdu.
0

The phase ¢ has disappeared.*

Influence of Light on o Vibrator.

The phenomena of refraction, dispersion and absorption, can be explained (subject
to the above reservation) by considering the action of light waves on a vibrator.
The equation of motion of the vibrator is

x -+ 2k + pre = f(t) = g R cos (ut + )du
0

o0
= real part off Rei@ ¥y,
0

The “ general” solution of this equation will be of the form Ae™ cos (vt + ¢),
where 7 = p? — ? and A, ¢ are arbitrary. The above solution is to hold for all
time from — o to 4+ . We must therefore put A = 0, and the complete solution
will be

0
. Jw'“‘t Wy,
@ = real part of f Ty T
. o p* — vt + 9/»%5

R . ; . .
= { Ny 4].2142{(292 — u?) cos (ut + ) + 2ku sin (vl + )i
The average energy of the motion excited will depend upon

o (p* — v?) + 4lPu”
Again, the work done by the light depends upon | f(t)edt.  Applying SCHUSTER'S

* Scerustir, < Phil. Mag.,” vol. 37, p. 533.

T We verify that this is a solution. This involves the process of dillerentiating inside the integral.
Now, the condition that a Fourier integral shall admit of heing so treated is, that the function repre-
sented shall be free from discontinuities and shall vanish ab +w. No mathematical discontinuities will
oceur in a physical problem ; and, if necessary, the conditions at infinity may be satisfied by introducing
into f(¢) a factor (such as ¢~ where ¢ is small) which shall ensure dying away at both extremities, and
which at the same time will not affect the Fonrier resolution in any marked degree.
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DOUBLE INTEGRALS TO OPTICAL PROBLEMS. 337

theorem, we find that the terms connecting different periods drop out (a familiar
property of ordinary harmonic analysis), and the rate of absorption is dependent on

T 2k R
o(PF — ) + 4P

The phase ¥ has again disappeared.

Heating efffects are directly dependent upon absorption. So again with physiolo-
greal effects.

§ 14. In the case of chemical and electrical effects produced by light we probably
have some kind of dissociation. This is perhaps true of luminescence also. It may
be that we do not yet understand the mechanism of dissociation. But, if the disso-
ciation arises from separation of ions as their light-excited vibrations become large,
the vibrator analogy will apply here as well. Doubtless some molecules will split
up sooner and others later; for the individual molecule the precise timing of its own
vibrations with the phase of the incident light will be all-important. But on the
average of a large number of molecules, the amount of dissociation will perhaps depend
on the rate of absorption of energy by a vibrator typifying the average structure.

It is necessary to repeat that our assumption of a linear equation for the vibration
of a molecule cannot be regarded as more than a first step towards a solution of a
difficult problem. In the words of Sir Groree Stokes, “Linearity applies to the
small disturbance of the single elastic medium—the ether—but it does not follow
that linearity applies to all the effects produced in a complex system of molecules.”

§ 15. Let us consider the application of the present treatment to the spectroscopic
analyses of light.

The light emergent from the instrument in a given direction is compounded of
different wave-lengths. The element |

R cos (ut + ¢)du

of the integral will contribute a component

Rep(u) cos (ut 4 ¥)du.

In this expression ¢(u) depends upon the structure of the instrument, and the
direction chosen, as well as upon w. The change of phase y— 0 depends upon the same
causes. We must note, however, that neither ¢(») nor yy—6 depends upon .

The emergent light will be

T Re(u) cos (ut + 6)du.

Now we have seen that the phase only enters as determining the constancy of the
hgnt If the light which comes into the instrument is comstant, so also is the

emergent beam. The phase has no further part to play; hence, the spectroscopic
VOL. CXCV.—A. . 2x
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338 MR. C. GODFREY ON THE APPLICATION OF FOURIERS

analysis of constant light depends solely wpon the instrument and the distribution of
enerqy among the elements of the Fourier integral.

§ 16. A dispersive medium, apart from its possible selective absorption of the
different wave-lengths, will always alter the relative phases of the different elements.
The transmitted light will thus be altered. But the preceding work has shown that
these phase-changes will not affect the sensible properties of the light.

§ 17. We have arrived at the conclusion that the different simple components of
constant light are not only superposed, but also independent as regards all energy
properties.

Radiations composed of a random Aggregate of Pulses.

§18. A constantly-recurring problem in optics is that of the composition of an
irregular sequence of pulses of a given type.

The question occurs in dealing with the radiation of an incandescent gas. The
pulse here consists of the train of waves given off by the molecule during its free path ;
after an encounter the train will be entirely changed, and practically independent of
the former train.

Again, what is the total effect on radiation of the damping to which the vibrations
of the molecules are subject? The question was raised by Lommur.® This author
was content to analyse ¢7# sin (pt + ) as a Fourier integral, and assume that the
different elements are independent. This, of course, will not be true for the simple
pulse which LomuaL considered. 1t is true that the motion e™ sin (pt + ) can be
reconstructed by means of an infinite series of vibrators whose amplitudes follow
the law of the Fourier expansion. But the phases of these vibrators will not be inde-
pendent ; they must be carefully adjusted to give the requisite effect.

§ 19. We shall find that, when we deal with an infinite and irregular succession of
such pulses, the energy properties do completely specify the motion.  The disturbing
influence of phase will disappear; in the Fourier integral representing the complete
motion, the phase will be a rapidly-fluctuating function of the wave-length, and all
distinctive phase-properties will average out.

The omission to deal with a sequence of pulses has exposed LommeL’s analysis to
adverse criticism. It will be seen that a more complete treatment confirms the
results which he obtained as regards the widening of spectrum lines through
damping.

§ 20. Another case in point is that of Rontgen rays. These are satistactorily
covered by Professor J. J. THomsON'S theory of electric pulses. The pulses are of
given type ; each one may be analysed by Fourimr's theorem. We find a certain
energy-wave-length curve ; in dealing with an infinite succession of pulses the phase-

* LomMEr, ¢ Wied. Ann.,” 3, 251, 1878,
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relations disappear, and we are left with the energy curve to completely specify the
properties of the sequence of pulses. These statements will be justified below.

§21. The subject has been opened by Lord Ravirrem® in his paper on ¢The
Complete Radiation at a given Temperature.” He proposes to regard this as an
irregular sequence of pulses of the type e~

Now

17 ‘
e = c‘-,f eMeosuwedu . . . . . . . . . (8)
T Jo

and the whole energy of the pulse

+ o ©

[ e"cgﬁdoczlge‘”?/wdu. Coe e e (22)
0

&

@

The intensity corresponding to the limits « and » + du is therefore ¢ %¢~""**du.

“If an infinite number of impulses, similar but not necessarily equal to (8), and of
arbitrary sign, be distributed at random over the whole range from — o« to -+ o, the
intensity of the resultant for an absolutely definite value of « would be indeter-
minate. Only the probabilities of various resultants could be assigned; and if the
value of u were changed, by however little, the resultant would again be indeter-
minate. Within the smallest assignable range of # there is room for an infinite
number of independent combinations. We are thus concerned only with an average,
and the intensity of each component may be taken to be proportional to the total
number of impulses (if equal) without regard to their phase-relations. In the aggre-
gate vibrations, the law according to which the energy is distributed is still, for all
practical purposes, that expressed by (22).”

§ 22. This important paragraph suggests the whole theory. But when we come to
take a closer view of it, it will be found that there are certain questions which still
remain to be solved.

Suppose, for instance, that the elementary pulse is confined to a certain small
range of time, such as are the pulses in Professor THoMsoN’s theory, how
many of those pulses must be present in order to give the properties which Lord
RavLEIGH associates with an infinite succession? Again, we might suppose that
different consequences would follow from different degrees of crowding among the
pulses. They may be so close, on the average, that a great number of them are
everywhere found overlapping ; or, again, they may be so thinly scattered as to be,
on the average, far apart in comparison with the space occupied by each. Experiment
does not allow us to say which of these suppositions is correct ; we may enquire what
is the test which determines the applicability of Lord RAYLEIGH'S theorem to the
aggregate. ‘

§ 23. In order that the sequence of pulses may, for us, be equivalent to a spectrum,

* ¢Phil. Mag.,” 27, 1889,
2X2
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340 MR. C. GODFREY ON THE APPLICATION OF FOURIER'S

an obvious condition is that the pulses shall not be so far apart as to be separately dis-
tinguishable. Photography can fix 107 second ; hence there must be many pulses in
1077 second. This is a condition certainly fulfilled by Rontgen rays. The coarser
the means of observation which we use, the more thinly may the pulses be scattered.
The results which we are about to investigate may be true, for a certain radiation, in
the present state of experimental science ; but will cease to be true for that particular
kind of radiation when our instrumental means shall have been so improved as to
enable us to distinguish structure in that radiation.

It shall be shown that this is the only condition necessary in order that a random
sequence of similar pulses may be equivalent to radiation of a spectral composition
given by the analysis of a single pulse.

§ 24. We have already proved that we are concerned simply with an integral effect
over a time T of the order of the shortest observable interval. If we are content to
view the radiation with the eye, or to use a slow photographic plate, T may be taken
as great as we please. If, on the other hand, we are investigating the radiation
with the shortest possible exposure, T may be reduced as far as our experimental
skill will allow.

Let us examine the Fourier composition of a numerous sequence of random similar
pulses.

Suppose the pulse to be

@0

@) = joq[)(u) cos (ut + )

the angle ¥ being a definite function of . We are to examine the Fourier integral,
equivalent to

f(t“T])'l“f(t"“Tz) +f(t"“73)+ A +f(t"7n)

where 7, 7o, 73, . . . 7, define a large number of points of time distributed at
random in an interval T. The breadth of the pulse is to be small compared with T.
The resultant integral is

o

j B(u)fcosut — ur 4= 4 cos ut — ury + Y. . . + cosut — ur, + }du.
0

Consider the quantity

(1) {cos ut 4+ — ur 4 cosut 4 i — ury + . . . cos it 4+ s ;W’E::,‘,} .. A

First, suppose that the time of vibration, 2 /u, is small compared with T or 7,—7,.
Draw from an origin lines of length ¢(u) making with the prime vector angles
§ — ur), Yy — ury, &e.  Then the bounding lines of the angles y—ur, f — ury, . . |
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Yy — wur, lie at random all round an origin. The phase of the resultant will be
arbitrary, while the mean value of its modulus 13

Now this is the amplitude of the compound harmonic motion A.

If we pass to a frequency u + du, where Tdu is small, the new phases will differ
but slightly from the old ; but if Tdw is finite or great, the new phases will differ
finitely from the old, and the resultant for v 4 du will have no apparent connection
as regards phase with the resultant for «.

Let us consider what happens when we observe this radiation. First, we can only
observe the content of a certain interval of time, which we have taken to be T; we
receive into our apparatus the total energy of all the pulses in T. Now ScrUsTER’S
theorem expresses the connection between the total energy of a radiation, and its ex-
pression as a Fourier integral (see p. 335). If the Fourier expression for the resultant
of the n pulses in the present case 1s

.{ R cos (ut + O)du,
0

the total energy is

]

T LRQdu.

We have just seen that R is not a definite function of u, but partakes of the
random character of the sequence of pulses. At this point we make use of
Ravrere’s principle ; that we are not concerned with particular wave-lengths, but
rather with the average energy over small ranges of wave-length. Bearing in mind
the average value of R, we see that, for practical purposes, we have a spectrum whose
intensity of energy for period 27/u is

nd*(u).

§ 25. The fluctuations in the energy-wave-length curve will be less rapid as we
descend to the longer waves of the spectrum. As we have just seen, when the time
of vibration is small compared with T, the fluctuations are so crowded as to be
indistinguishable ; the eye, or sensitive plate, will take the meancurve n¢*(u). But if
the time of vibration is large compared with T the range of angle included in the set

Yo— ur, Y —ury, . . . — ur,

will be but small; the resultant will possess a phase intermediate between the
extreme values, and a modulus of almost n¢(u). As we pass continuously to quicker
vibrations, the modulus will diminish from n¢(u) to zero, and so on; the divergences
of the energy curve from ¢*(v) being no longer rapid but on a broad and theoretically
distinguishable scale.

It will be found, however, that for short pulses the amount of energy in the slow

* Lord Ravigicn, ¢ Phil, Mag.,” Aug., 1880 ; or ¢ Theory of Sound,’ ed. 1894, p. 40,


http://rsta.royalsocietypublishing.org/

I\

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
A

Y
A

)

a
,

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

342 MR. C. GODFREY ON THE APPLICATION OF FOURIER’S

waves is inconsiderable. The prepotent part of the energy resides in those quicker
waves for which the energy curve is of the normal form n¢*u). (Compare the
magnetic pulses of Professor THoumsoN, treated in the next chapter).

§26. To recapitulate, the pulses of the sequence will not be separately dis-
tinguishable ; their effect depends upon the integral of energy over an interval of
time comparable with T ; the phase of the Fourier element will have no further
effect ; and all the observable properties of the sequence will be bound up with the
energy function ¢¥(u).

§ 27. Hitherto it has been assumed that the interval T comprises a large number n
of complete pulses, these being for the moment supposed not to be of infinite
breadth. In general the boundaries of the interval T will find themselves in a pulse ;
there will be a number of incomplete pulses near each end. But these are few com-
pared with the whole number 7 ; they will not perceptibly affect the aggregate.

The spectrum is independent of n as regards composition, if’ n is large. The total
intensity, however, varies as n; thus a variation in the crowding of the pulses
causes a corresponding variation of the brightness of the spectrum-—a result which
might have been expected.

§ 28. Let us consider how these results are affected when the individual pulses are
of infinite breadth. Suppose that we examine the type which Lord Ravruicw
suggested,

7o) = e

The displacement becomes comparatively small when the distance from the centre
of the pulse is great compared with 1/c. In fact, we are tempted to regard these
pulses as practically equivalent to pulses of finite breadth 1/c or thereabouts.

Suppose that the least observable interval T comprises a large number of central
points of pulses. Suppose also that T is great compared with 1/c. The interval
will contain a contribution from each of the infinite succession of pulses. But, since

2 . . , . . . .
Je=?dx 1s small when b is great, only those pulses which contribute finite displace-
b

ments will affect the aggregate content of T. Now the centres of these will lie
either in the interval, or at a distance from its extremities of order 1/c. As 1/cis
small compared with T we shall practically be concerned only with the large number
of pulses which lie almost entirely within T. We are, therefore, justified in
regarding 1/c¢ as the effective order of breadth of these strictly infinite pulses.

§ 29. If the pulses (supposed finite) are crowded, so that they overlap largely,
we shall not find the characteristic spectrum unless the time-interval T which we
are investigating is large compared with the breadth of a pulse. Tf T cuts into many
pulses, but 1s not large compared with the breadth of each, we shall lose sight of
individual pulses, it is true; but the energy function will be largely affected by the
incomplete pulses. In other words, if we can shorten the exposure till it is com-
parable with the duration of a pulse, the spectrum observed will begin to show
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DOUBLE INTEGRALS TO OPTICAL PROBLEMS. 343

deviations from the normal spectrum as taken with a much larger exposure, or as
observed by the eye.

§ 30. The extension to aggregates of pulses which are not all similar is obvious.
Suppose for instance that we have a sequence of pulses of constant displacement,
the lengths of the pulses varying, while at the same time the proportions of
different lengths are given. The pulses of lengths between x and x + da are, say,
f(x) dx, of the whole. They may be taken as equal pulses; suppose that they give
an energy function ¢*(u, ). Then the whole energy of the mixture is

w0 o0

[ [ o)) de du

Rintgen Rays and Ordinary Light.

§ 31. Professor Tuomson® explains Rontgen radiation by supposing it to consist
of a succession of electro-magnetic pulses. Kach pulse is practically a pulse of con-
stant magnetic force, lasting for a short time. The thickness of a pulse is com-
parable with the diameters of the particles composing the cathode stream. Lord
Ravreice has pointed outt that these pulses may be regarded as simple waves
of short wave-length. He did not explicitly consider the properties of a succes-
sion of pulses. Perhaps on account of this insufficiency of statement, Professor
TromsoNf has not fully accepted the above-mentioned view. He has held that the
Fourier analysis of a pulse has no physical meaning. Now this is a valid objection
to the identification of the single pulse with ordinary light of any composition what-
ever. The different elements of the integral will possess definite phase-relation ;
they are in no sense independent.

On the other hand, it has been proved in the course of the present essay that the
succession of pulses will actually be equivalent to a spectrum of definite composition.
The Thomson pulses will certainly possess the property of being brief in comparison
with the shortest observable interval of time ; there will be a great number of them
in such an interval ; it follows that, as the instrument averages over small ranges of
wave-length, phase properties will be lost; the processes of time- and wave-length
averaging will efface all distinction between the succession of pulses and that
mixture of light which is determined by the analysis of the single pulse.

§ 32. We proceed to consider the energy-distribution in the scale of wave-length.

We must express as a Fourier integral a function of « which is zero from
—w to —d; E from — d to + d ; zero from + d to 4 .

We find ‘

———cos ux du.

o0
2K ] sin wd
0 K71

$(x) =
* Professor TroMSON, ¢ Phil. Mag.,” February, 1898.

1 Lord RavLricH, ¢ Nature,” April 28, 1898,
1 Professor J. J. THoMSON, ‘ Nature,” May b5, 1898,

mw
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o544 MR. C. GODFREY ON THE APPLICATION OF FOURIERS

Accordingly the distribution of energy in the spectrum given by the succession of
such pulses is that shown in the curve
sin® wd

o =
Y 1P

Tig. 1.-—Energy Curve of Rontgen Rays.

;
|
3
Q1
g .
|
| \\
! o,
[ B L S f
27+ Wave-t s = + S
+ Wave-tength 0 27 a7 <7 &7
A, 2d 2d z2d

If we take the particles of the cathode stream to be at least as great as molecules,
2d, the thickness of pulse, is small compared with the wave-length of visible light
(see THOMSON'S paper); d/A, may be taken as 1455, where ) is the wave-length of
yellow light, say. 1In the scale of fig. 1 2a7/\;is very near to 0. It appears that long
waves have the greatest amplitude; practically the same amplitude is maintained
onwards through the visible spectrum, and in fuct till we approach to wave-lengths
comparable with the diameter of the molecules.

§ 33. The measure with which we are concerned, however, is not amplitude, but
integral energy through ranges of wave-length. Considering this, we see at once
that the short waves are all-important. The total energy of the pulse is of order E2d.
The energy contained in waves of length from infinity to A, is of order E*d. (d/\).
Remembering that the visible spectrum includes an octave, we may say, roughly,
that 14'yo of the energy of the radiation will reside in the visible part of the spec-
trum ; and, of the rest, practically the whole in waves of length comparable with
the diameter of the molecules. It is noteworthy that waves of length equal to the
thickness of the pulse or sub-multiples thereof will be excluded from the spectrum.

§ 34. Inequalities in the thickness of the pulses will slightly modify the features
of the equivalent spectrum. Such inequalities will arise partly from the fact that
different pulses arrive in slightly different directions; they come from different parts
of the glass (an effect diminishing with distance). Furthermore, the particles are
not stopped at a single impact in the molecules of the glass.

It also appears that, if Rontgen rays can be made powerful enough, they will
affect the eye as ordinary white light.

§ 35. Professor THOMSON’S magnetic pulses are all negative. A mixture of negative
and positive pulses will present the same features except in so far as the long-waves
are concerned. If the negative and positive are present in equal quantities, the
amplitude of the infinite wave will vanish.

§ 86. It is to be remarked that Professor THoMS0ON'S magnetic pulses differ in one
mmportant respect from the thin pulses by which Sir Grorer Sroxkus* has sought to

* WiLpe Lecture, ¢ Proc. Manchester Phil. Soc.,” 1897.
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explain Rontgen rays. 1In the former, we have the magnetic force great and nega-
tive throughout the pulse; in the latter, positive and negative are to be so balanced
that the force integrated through the thickness of the pulse shall vanish. On this
property, together with that of the thinness of the pulses, Sir GEORGE STOKES* bases
his proof that there will be no sensible diffraction.

The mathematical consequence of this property will be zero amplitude for the
infinite wave-length. Practically this means that the energy in the visible spectrum
is very much smaller than for the Thomson pulse. It will be of order E¥l. (d/),)?,
instead of E2d . d/\,; a proportion of 107 of the whole, instead of 107%.  Now diffrac-
tion depends chiefly on waves whose lengths are of this order; very much shorter
waves will not be diffracted, but will penetrate matter; and in any case would give
much smaller diffraction patterns. Pulses of both the proposed forms will be sensibly
free from diffractive properties; those of STOKES in a much higher degree than those
of THOMSON.

Radiation of an Incandescent Gas.

§ 37. As an example of the composition of a large number of independent pulses
of uniform type, we will take the case of radiation from an incandescent gas. We
will suppose the mass of gas to be at a great distance, and to have no visible
diameter ; we shall thus be enabled to consider the radiation as composed of plane-
waves travelling at right angles to their own wave fronts. Furthermore, the amount
of gas is to be so small that the emission is not sensibly affected by absorption. The
gas 1s to consist of molecules all having the same period of free vibration.

§ 38. The light received by the spectator will not be homogeneous. One reason
for this is the Doppler effect.t The velocities of the molecules in the line of sight will
alter the period of the light received. Another cause will doubtless be the altered
vibrations of two molecules when very near to one another. This will perhaps become
important at high pressures, but we will not further consider it at present.

§ 39. Lastly, we have to take into account the fact that the train of single waves
emitted by each vibrating molecule is not infinite in length, but has a definite
beginning and ending. The effect of this cause is investigated below. The Doppler
effect is included in the same piece of analysis. We shall arrive at the remarkable
result that the limiting width of the spectrum line when the pressure is indefinitely
diminished is less by some 10 per cent. than the width calculated by Lord RavLreicH,
who took into account nothing but the Doppler effect.

§ 40. The vibration of a molecule will be altered by collision with another. The
velocity will also be altered, in both magnitude and direction. The vibration
recerved by the spectator from this molecule will therefore be suddenly and
fortuitously altered in period, amplitude and phase. The total radiation received

* WriLpE Lecture, ¢ Proc. Manchester Phil. Soc.,” 1897.
1 Lord Rayreicu, ¢ Phil. Mag.,” vol. 27, April, 1889.
VOL. CX(CV.—A. 2 v
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346 MR. C. GODFREY ON THE APPLICATION OF FOURIER'S -

from the whole gas will consist of a great number of finite trains superposed. We
must consider those trains as practically independent. It is true that each indi-
vidual train is connected in one respect, namely, instant of beginning or ending, with
two others, the trains emitted by the same molecule before and after. But this
element of regularity will be overwhelmed by the independence of the different
molecules.  All we have to do is, to find the Fourier integral equivalent to a finite
train of waves, to find the distribution of energy in the scale of frequency, and to
sum up the energy for all possible trains.

Fourier Analysis of a Train of m Complete Sine Waves.

§ 41. The general theorem is

o to

wf(@) = [ [ coso(r = a)f()dodn
0
In the present case f(x) = 0, except from 0 to 2wm/«, within which limits f(x) =
COS K.

Thus

2k

wf(x) = [o yo cos w(\ ~— ) cos kA dw d\

w 2minfk

= ‘,(0 jo fcos (o -+ k)N — wx -+ cos (0 — k)N — wrjdo d\

0

' ' am\ | winw am\ | mine
coswlz — " Jsin——  cosew|xz — ) sin
= Cla) \ K K K K

S

. w+lc;,

W — K

TN N Y5
SN~ 8IN

If we consider the quantities KC , we see that the latter attains to a

K
o+’ w—
maximum value #m/k at o = k, and that the former is small in comparison since m
is generally a considerable number. v
We shall be concerned only with the values of o near to «; accordingly the first
term shall be neglected. We shall then have a distribution of energy,

[e.e]
sin® rmw/ rc
( do— / :

Jo (0 — &)’

neglecting numerical coefficients which do not alter the distribution.
Let @ — k = 2mn; then at a distance n from the maximum (n being reciprocal

wave-length) we have energy proportional to

., T
sin? —(w — k) C
K sin e,

n? n?

where 7 is the length of the train.
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For this single train, then, we have energy falling off from a maximum at «

according to the law
’ sinzrin

(the ordinary law for the diffraction pattern of an edge), where % is the distance from
the brightest part measured in the scale of reciprocal wave-length.

Summation for all Molecules having Definite Velocities both Athwart and in Line
of Sight.

§ 42. For these we have a definite position « of maximum brightness, and definite
resultant velocity .  We have to integrate for the different lengths of train.

Now Tarr* has shown that, of all atoms moving with velocity v, a fraction ¢
penetrates unchecked to distance p, where

w1 11 ( q >
— L Sy R

f = dans® . ot <4/021)6 + 47 + on ) O(', dv, ’
We may write this function of » as follows :—

A
— hns? r—e -5 - 2) a'l’sz]
f=mn T T k\}’n + L)( ¢

=P . . . ... (i),
where P = v},
e P 1
f(P) = < T 2>

& = nins?,

r

[ e dP,
lo
n = number of atoms in unit volume,

s = diameter of atom.

From this we see that, of molecules moving with velocity v, a fraction

fedp

have free paths between p and p 4 dp.
Now, such a molecule will emit an undisturbed train of waves of length between

A% . . .
r and 7 4+ dr, where » = e and V is the velocity of light.

—ur
Hence, of all molecules moving with velocity v, a fraction %ce Y dr, will give free
paths between r and 7 + dr.

* Tarr, ‘Edinb. Trans.,” vol. 33 p. 72.
2Y 2


http://rsta.royalsocietypublishing.org/

I\

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

L\

\
)

/’A

Y
A

a
J

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

348 MR. C. GODFREY ON THE APPLICATION OF FOURIER'S

Returning to the expression for the energy of a single train of length » (i.), we see
that with the aggregates of molecules now under consideration (definite thwart and
line-of-sight velocities) we have for n a proportion of energy

v .
!}; ‘ ¢V sin? g L doe
Vol
f o
v »f
—_— O — N "
= 5oy .(Oc v (1 — cos 2mnr) di
— % o5 Y 4 2 sin
“cos 2arnr 4+ 27rn sin 29 o
S v \ v
202V T ur pf\2
T g
0 v/
—1 1 ;
I A (iii.)
D N G 1 R
e (7]

We next antegrate for a definite velocity p wn the line of sight, and all possible
velocities q athwart.

The proportion of molecules with thwart velocities between ¢ and ¢ + dq is
qe"dq.  Hence, omitting the § from (iil.) (it does not affect the distribution of
energy), we have

o] , 1
gqe"’“@-frﬁ“i@ co e i)

where v = p* + ¢

Lastly, we introduce all possible velocities in line of sight.

Here the Doppler effect enters; the mid-point of the spectrum (iv.) will be
different for different p’s. Let « be the distance from the centre of the final spectrum
line (measured, as before, in reciprocal wave-lengths), we have

+ 0

) , 1
S 6-7'17 S qg_/”j — 7 Tz 7{]/" 2 d27 dq e e e e e (V)
) ) R+ )

/
— 0

This integral, regarded as a function of », gives the distribution of light in the
spectrum.

To make further progress, we will change the variables of integration from p and
q to p and v, where v* = p* 4 ¢°>. We must remember that f'is a function of v.
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r , 1 1
pemenet S Se—]w .V dj) (»ZIU l)‘ 9 /U/._ 2 + / ﬂ jl>2 _ZJL 2 ,
JoJ, <“” - w> + <27rV> <9° tav) Tt <2wv>

or, changing the order of integration,

;o 1 1
dv dp . ve™"* 5 —~3 -+ = s .
. _ P /AN PN .o (vi)
So S o {<a’ w) + <27rV> <x vt <zwv }

Visibilaty Curve.

§ 43. Professor MicHELSON™ has shown that, although the breadths of elementary
spectrum lines cannot in general be examined directly, yet the application of his
interference method enables one to obtain much more detailed information. The
light is made to interfere with itself, at a relative retardation u of the two half
streams.  Interference bands are produced and their visibility ” estimated for
different values of w, the path-difference. From the visibility-curve thus constructed
we can work backwards to the breadth of the spectrum line, and find out something
about the distribution of light in this breadth.

MicuELSON has shown that, if ¢(x) represent the intensity of light for position «

in the spectrum, and
+wo

C = J' ¢(x) cos 2rux dx

—®
+ oo

S = f $(x) sin 2mux du

—

+ o

Q= [ ¢la)de

-0

. (GLANRNCE
and Vi= —*;2—2—‘,

then V is the visibility-function, in terms of u, the path-difference.

* MICHELSON, ¢ Phil. Mag.,” vols. 31 and 34.
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350 MR. C. GODFREY ON THE APPLICATION OF FOURIER’S

In the present case S = 0, and

+ 0 o©
4 1
C= cos 2mrux dx . e~ v dv dp3, 2 of 2
EE R /w;
0vo AV, 27V )/
o +oo d
: XL
Now s‘ cos 2muL T WA,
. Q AV 27V
+ o
— cos 2rup (> cos 2runde 2aup 27NVt
= ?»Vng </_7£2_COS>\V'M'C v
27V )

—0

We may omit certain constant factors, and write

_ T o 20up 1 —T?
C= LJ'Ocos NV g C Ve v dv dp

AV [ g 2 A
= L) n?LV'f'(l( V)

We may still further simplify this by introducing the notation of page 347.
Omitting unnecessary factors,

17 ukl  dP s .
_ - il —P2 = uRA)
C= " Lﬁm Vi f(l’)e e v
17 . dP o .
= !'Osm 20uP . ) eTIRIIE L (vil),
where oh = <.
b Vi
g ins?
@ Vi
P =l

e F?

S®) =" (2] [[erap,

To deduce V (the visibility function) from C, all we have to do is to put v = 0 in
C, and divide C by the quantity thus formed.

Limating Case of Zero Pressure.

§ 44. If the pressure is very small, 7, the number of molecules in unit volume
becomes small, and with it ¢®. We are thus reduced to

17 . P gp
C, = —s’ sin 2buP | ?,,,,)i_
ulg JE)
* Tarr, ¢Edinb. Trans.,” vol. 33, p. 95.
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DOUBLE INTEGRALS TO OPTICAL PROBLEMS. 351

§ 45. This expression as it stands is quite intractable. We are enabled, however,
to make progress by means of tables which Ta1r® gives in his paper on the kinetic
theory. Our subject of integration is

e~ P gin 2P sin 20uP P3e—F*

f(})) ]_) l)e_Pz + (21)2 + l)J.P 6_P2[ZI)
0

in 20ul  X,. . ]
__sin 2bu . =2 in TATT’S notation.
P X,

On marking out the graph of X,/X, by means of the values in column 6 of Ta1r’s
table, it becomes obvious that the general outline of the function is very near to
that of

Fig. 2
5 e N R R I R
| PZ=SN L ]
/. \ 1 p2 ith 4
/ 7| AN : IzPe Wlth/—bg':='8yl.\‘ N
/ \ N
; -pR
/ \\ || X, P R
Ty N I Bl ey =
/ N X, PeP+6?P’?+1)Ge aP. |
0/ / \’ :
o 41 #
/ \
7 \
/
/ \\\
; \
/ R
; \
<05 / A
’/
'04 / N,
/’ >
<03 7 N
.02 4 N .
/ NN
oY} /’ = R
o ] \\\"\\kx,
O 4 2 3 4 6 10 /5 20 25

To make the agreement as good as possible we choose p so that the two curves
may attain their maximum for the same value of P.
1

Now the latter function has its maximum at P = T graphically we see that we

1
must choose P 9025 (about) ; lo- =81 ...
e

In the accompanying figure, L. (continuous curve) is Xy/X,; IL (dotted curve) is
1P~ The agreement is so good that the error in the integral through using II.
instead of 1. will be only about 1 per cent. ~But this is of the order of the errors
in the observed visibilities, with which we propose to compare our results.
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Making this substitution, we have

ks

1 [ sin 20wl bt _pu2
— 2 =22 — =
C, = o jo T PR dP = 1l e
V2 K2y ees
Vo=c¢ 7w =¢eTaava . . . . . . . .« .« . . . (vi)

§ 46. The result is now in a form which we can interpret. Lord Ravrercu® has
worked out the width of the spectrum lines, taking into account the Doppler effect
alone. 'The visibility function deduced from his work in accordance with MIcHELSON’S
definition of ¢ visibility 7t is

e (ix)

The two functions (viit) and (ix.) are of the same form, and differ only in the
presence of u? in (viii.). Now MICHELSON'S experiments gave visibility-curves agree-
ing in general character with (ix.) ; they would therefore agree equally well with the
function (viil.) which has been found above. '

Numerical Estimates.

§ 47. MicHELSON has investigated the lines of several gases with his interferometer.
He compares the “ half-widths” (value of u for which visibility is 4 of maximum) of
the visibility-curves with the values deduced by Lord Ravreignu from DorpLER’s
principle. Unfortunately MicHELsON misquotes RavLEiGH's result, and has dropped
a 2; in Rayrereu’s formula the path-difference 1s 2A; MicHELsON has taken it to
be A.  The last column of figures in page 294 of MicHrrSON’S paper} should be all
doubled. This would give the observed  half widths” in every case much less than
the calculated values.  Furthermore, using the function which has been obtained in
the present paper,

KPu?

V — 2— UV
where [ is the Napierian log. of 2.
Hence for half-width

2u/ NI

But v = 72]5 ; v being the average velocity of the molecules.
w

2u/ 1V
Hence u:)\.j\/

i v

u/N = 33V /v, instead of MicHrLsON’s "15V /v,

* ¢« Phil. Mag.,” vol. 27, p. 304, 1889. 1 MicHELSON, ¢ Phil. Mag.,” vols. 31 and 34.
1 ¢Phil. Mag.,’ vol. 34, 1892. '
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Lord Ravirier’s expression for the half-width is

3
TE v

Now p = 10/9; hence the theory developed in the present paper necessitates a
further addition of about 10 per cent. to the values calculated from Lord Ravreica’s
formula. But the effect of this is quite obscured by the above-mentioned necessity
of doubling the figures which MicueLsoN deduces from theory. The conclusion of
his paper should be that Lord RavLrIcH's theory accounts for a certain fraction of
the observed widths of spectral lines.  The fraction varies from £ to 1 for the different
substances examined.

If the distribution of energy in the spectral line be given by

la?

M) = 2 =

w8 sy
then C= J’¢>(x) cos 2mux do = WA
and V=TT =

If we construct the curve representing the energy of the spectrum on a scale of
reciprocal wave-lengths, the “half-width ” in this curve will be §,.  Hence the half-
widths” in the energy-curve and the visibility-curve are connected by the relation

{1
; . '8;).

§ 48. Our result that 10 per cent. ought to be added to the visibility half-width
means that the theoretical width of the spectrum line should be diminished by a
similar percentage.

It might have been expected that, with pressure small and collisions comparatively
few, the modifying effect of the curtailment of free trains would disappear, the free
paths being now on the average long. We might have expected that the formula for
the width of the lines would converge to that given by Lord RayreieH, in which the
Doppler effect alone is considered. If the above reasoning is valid, there is no such
convergence of the two theories when the pressure is indefinitely reduced; the
results derived from them differing by some 10 per cent. It is noteworthy that the
present theory leads us to expect narrower lines than does Lord Rayrereu. This
result is certainly paradoxical, and calls for further justification.

The modification in theory has been to substitute for mathematically homogeneous
light proceeding from each molecule, a radiation giving a certain continuous spectrum.
We could hardly have foreseen without a complete analysis that, for zero pressure,
the integrated effect of all these spectra gives an intensity curve for the total spectral
line steeper than before.

VOL. CXCV,—A, ’ 2 7

ny =
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354 MR. C. GODFREY ON THE APPLICATION OF FOURIER’S

§ 49. The following considerations may tend to remove the doubts which this result
may arouse.

The whole set of molecules with given velocities, thwart and in line-of-sight, and
with given length of free path, will emit light of a certain spectral composition,
namely, that given by the function slr—{;;r—@ (p. 346), » being the length of the train of
waves emitted during the single free path. In theory, this will give a set of lines in
the spectrum of the same pattern as the diffraction lines of a straight edge. Other
sets of molecules with other velocities and path-lengths will give other sets of lines ;
the whole aggregate of lines overlapping and compounding to give such spectrum lines
as actually exist, and were measured by MICHELSON.

§ 50. Now, by lowering the pressure of the gas, we may lengthen the average free
path, and the average trains of waves emitted in a single flight, this lengthening
being theoretically without limit. The effect of this will be to narrow the curve

sin? rn . .o . .
— also without limit. We are tempted, when this happens, to substitute for the
te of sin? rrn
agoregate of curves -
ggregate e

the aggregate of their maximum ordinates. If we do

this, and also assume that the average length of wave-train is the same for all
different velocities in the gas, we shall, in effect, be following Lord Ravimiew’s
procedure, and we shall obtain his expression for the width of the resultant line.

§ 51. On closer examination, it will be obvious that the molecules moving with
greater velocities emit, on the average, shorter wave-trains, For, given the velocity,
the mean free path is 1// (p. 347), a function of v; while the corresponding train of
waves has length V/vf. It is not difficult to verify that this function of # diminishes
as v Increases.

Now, the molecules with greater velocities in the line of sight have, on the average,
greater resultant velocities. These, therefore, give shorter trains of waves, and

sin? wrn

smaller ordinates in the energy curve (the maximum of 18 wr?, forn=0). But
n

these molecules will provide light that goes towards the edges of the spectrum line.
The energy-curve will accordingly be steeper, and the line narrower than would follow
from the assumption that the mean free path is the same for two groups of molecules
having two different velocities.

§ 52. Furthermore, it is not allowable to substitute for the component curves their
maximum ordinates, however steep and narrow these curves may become. The

sin? 7rrn .
2 1S
W

742  If we substitute these maximum ordinates and then

maximum of

form an energy-curve by summing them all into a smooth curve, each will contribute

. . . .,q Sin?arn
energy proportional to #%.  But, in reality, the total energy connected with —
+ o
. sin® 7rn?
is

w?

dn = 7°r, Thus, trains of length » ought to contribute total energy

—®
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DOUBLE INTEGRALS TO OPTICAL PROBLEMS. 355

proportional to 7, not to »% In fact, the taller the component curves are, the
narrower they are. This consideration is overlooked if we allow ourselves to substitute
the maxima of the curves for the curves themselves when these become narrow.

§ 53. This latter source of error, by which #* is substituted for », will not affect the
shape of the resultant energy-curve if the average length of train is taken to be
independent of the velocity. But we have seen that greater velocities give shorter
trains. And this error tends in the same direction as the other ; for it gives too great
prominence to the longer trains, .c., to the smaller velocities, which velocities send
light to the middle of the spectrum line. Hence the effect of the error is to make the
resultant curve too steep.

Accordingly, the only accurate way of investigating the limiting width for zero
pressure is to form the general energy function as on p. 349, and then to proceed to the
limit by diminishing the number of molecules in unit volume.

FBffect of Damping in the Wedths of Spectrum Lines.

§ 54. It has been urged by LoMMEL* that, whereas the vibrations of an atom are
undoubtedly damped by radiation, the light emitted by a simple gas will be to some
extent continuous. The same idea has been recently developed by JAUMANN. T

Both of these writers rely on a Fourler analysis of the vibration

esin(pt+¢) . . . . . . L. (x)

Their results have not been accepted generally ; as has been pointed out in the
course of the present paper, their procedure will have no physical meaning for the
single train of waves with which they deal.

But we have also seen that a vast aggregate of independent emissions of this form
will really give the result which LoMmeL suggests.

§ 55. The trains of waves emitted by the molecules of a gas cannot strictly be
represented by (x.). As a matter of fact, such a motion as (x.) will never be allowed
to go on indefinitely ; it will always be checked at a certain stage by a new collision.
Nevertheless, if the radiation is so rapid that the vibration of a molecule has generally
become insignificant before the next collision occurs, we shall not be making a
serious error by allowing (x.) to represent the train of waves. We will proceed to
investigate the effect on the assumption that the damping is so rapid as to allow this
procedure.

§ 56. Both LommEeL and JaumaNN make an erroneous application of FouRrikR’s
theorem. The analysis should be as follows :—

* LoMMEL, ¢ Wied. Ann.,” vol. 8, p. 251, 1878.
T JAUMANN, ¢ Wied. Ann.,” vols. 53 and 54.
2 7z 2


http://rsta.royalsocietypublishing.org/

A
A
A
) N

[~

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

L\

[ Y

/J
A

\

a

a ¥

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

356 MR. C. GODFREY ON THE APPLICATION OF FOURIERS

Ft)=0fort = —w tot =0
and F(t) =e™cosptfort =0tot= 4o,

(The phase ¥ will not make any important difference in the energy-function.)

7F(t) = 50 Le“"ﬁ cos pBeos (B — t)du df

0

=3 .{Odu L)e""ﬁ [cos (p + uB — ut) -+ cos (p — uB +ut)|dB

S

w et b it oot = = i
=) 4+ (p + w)? &+ (p — w)? ’
Now «/p is small since the damping is gradual ; accordingly, both —‘,—-—l———,, and
© + (p + )
1 . .
pe ey g will be of order 1/p® unless p is near to u. In that case, the latter of the

two expressions will attain to the order 1/k. We are justified in approximating to
the extent of neglecting the former expression.
§ 57. The energy of the train of waves will depend on

j e
ok + (p — u)*’

This function will define the spectrum to which a vast concourse of such damped
trains is equivalent.

Now this will -be a widened line in the spectrum. The “half-width” will be of
order « in frequency. The half-widths which Micuersox has observed for irresoluble

lines are of order
107% X p.

. . 105 . .
If « is of this order, I‘f—%dw is finite.

Now 10%/p is comparable with the time of 10° vibrations. ~Again, there are on the
average 10° vibrations in the free path. In time ¢ the vibrations are reduced in the
ratio e : 1; if «t is finite, the reduction of the energy may be very noticeable.

§ 58. We are thus led to conclude that the vibrations of molecules may be very
considerably damped in the course of their free paths and yet no widening of lines
be produced beyond what is actually observed. It will be remembered that the
kinetic theory, without damping, gave widths varying from one-quarter to two-thirds
of the widths observed. It seems mnot impossible that, for small densities, the
residual width is to be ascribed to radiative damping. When the density becomes
considerable, the mutual effect of neighbouring molecules will doubtless become so
important as to obscure both damping and Doppler effect
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DOUBLE INTEGRALS TO OPTICAL PROBLEMS. 357

Character of the Aither Motions vn nearly Homogeneous Light.

§ 59. It has been thought that the possibility of producing a large number of
interference fringes from white light is an indication of a certain regularity in the
aether motion corresponding to such light. This view has been abundantly refuted
by Gouy, RayreieH, and ScHUSTER.*  The fringes cannot be produced without the
use of a spectral apparatus; and the number of the fringes is an index, not of the
regularity of the white light, but of the resolving power of the spectroscope.

A large number of fringes can also be produced without a spectroécope, by using
radiations which naturally possess a high degree of homogeneity. The number of
these fringes is a test of the homogeneity ; and in this case, it is also a test of the
regularity of the sether motion.

§ 60. We have justified the representation of light by a Fourier integral of the
form

(<]

j R cos (ut + $)du,
0

where R, s are functions of w.

It can be shown that, for light of long duration, s will fluctuate rapidly in terms
of u.

For approximately homogeneous light of mean frequency p, we will use the
notation

In this expression R will be insignificant, except for values of # small compared

with p.
The above integral can be written

cos pt | R cos (ut + P)du — sin pt [ R sin (ut 4+ ¢)duw.

The ranges of integration will practically be confined to a region on either side of
zero, small compared with p.
Each of the integrals

| R cos (ut + ¢)du, | R sin (ut 4+ §)du

is a function of ¢, whose variations are slow compared with those of cos pt. The
expression cos pt [R cos (ut + ) du may be taken to denote a simple vibration of
period 2m7/p, whose amplitude varies slowly. The zeros of the expression will be,
effectively, the zeros of cos pt. Similar statements will apply to

sin ptfR sin (ut + §)du.

* Gouy, ‘J. de Ph., series 2, vol. 5, p. 354 ; RavLEIGH, Art. “ Wave Theory,” ¢ Eneycl. Brit.”; ¢ Phil,
Mag.,’ vol. 27, p. 460, 1889 ; SCHUSTER, ‘ Phil. Mag., vcl. 54, p. 509, 1894
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358 MR. C. GODFREY ON THE APPLICATION OF FOURIERS

Finally, the motion which we have analysed as
cos pt | R cos (ut + y)du — sin pt [ Rosin (ut 4 §)du

may be described as a simple vibration whose amplitude and phase vary slowly.
We might equally well say that the amplitude and period vary slowly; the latter
within narrow limits. In passing it is interesting to note that all the effects of white
light would be produced by an approximately simple vibration whose period varies
slowly, but within wide limits; the whole range of variation being traversed a great
number of times in the course of the shortest observable interval of time The great
gap between 1071 second (the period of vibration) and 1077 second (the shortest
observable time) will give room for a rate of variation small compared with the one
measure, and great compared with the other.

§ 61. Returning to the nearly homogeneous light, let 4-s be the etfective range of
integration in

| Rcos (ut + ¢)du, | B sin (ut + )du.

This of course means that R becomes small outside the limits 4s. The width of
the spectrum line will be of order s. Now the two integrals just quoted will give
irregularly sinuous time-curves, the average extent of a sinuosity being of order 1/s.
Thus, the varying simple vibration

»ts

[ R cos (ut + ¢)du
p=s
will have entirely changed in amplitude and phase after a time of order 1/s. It
will therefore be impossible to produce sensible interference with time-differences of
more than 1/s. This is another aspect of the fact that for lines of width s (measured
in frequency), the maximum path-difference for interference is of order 1/s.

§ 62. We can look at the same matter from yet another point of view. We may
go back to the composition of the radiation from a gas. This we have seen to be
built up of finite trains of waves. For the moment, let us omit the Doppler effect
and take all the trains to be of the same period. In an interval during which only a
small proportion of molecules collide, the amplitude and phase of the composite
vibrations is but little altered. But after an interval comparable with the mean free
time of molecules, most of the molecules will have obtained new and independent
vibrations ; the composite motion will be entirely altered in amplitude and phase.
For the discharge tubes used by MicHELSON this time is of order 10° periods.

Again, isolating the Doppler effect, we deal with the superposition of infinite
simple trains. We have already seen that the composite vibration will have a
materially altered amplitudé and phase after a time equal to the reciprocal of the
range of frequency in the component trains. For MICHELSON’S experiments it
happens that this time is again some 10° periods.
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DOUBLE INTEGRALS TO OPTICAL PROBLEMS. 359

In the actual radiation the two causes coexist ; the joint effect is of the same order ;
the radiation will attain independence after every 10° periods. In accordance with
this fact, we have interterence up to path-difference of some 10° wave-lengths; while
the width of the lines corresponds to a fraction 1/10% of the frequency of the light.

Effect of a Natural Light on a Vibration.

§ 63. We have already proved.that the complete solution of
z 4 ke + px = f(t) = I R cos (ut -+ )du
0 .

o0

is r = 5.0(2—3?—7;235:“4—1;62—?05 {(pz —_ ’L&Q) CcoSs (ut -+ IIJ) + 2k sin (ut + lp)},

J(t) being such a function of time as can actually represent a natural radiation (see
footnote, page 336).

Now we have already pointed out the hypothetical character of this treatment of
the molecule as a simple vibrator. Nevertheless the method has a historical interest,
and may be regarded as a foreshadowing of the truth; it may be worth while to
sketch the result of applying our analysis.

The composition of the exciting light is

©

[ e,

of the light emitted by the molecule
® Redu
[ (p* — v + de®’
0

while the rate of absorption is dependent on

» 2k’ R3du

[ =y + ace
0

We will take the light to be constant. Its effect on the vibrator is seen to depend
entirely upon its spectrum.

§ 64. This is equally true for nearly homogeneous light. The effect of the irregu-
larities in the light may be deduced from the observed widening of the spectrum line.

Now SELLMEIER treated of this problem in the paper which laid the foundations
of the modern theory of dispersion.* He recognised that no natural radiation is a
perfect train of simple waves, and he investigated the effect of the irregularities upon
a vibrator. The period of the light was to differ from that of the natural vibrations
of the molecule. He came to the conclusion that the irregularities in the light would

* SELLMEIER, ¢ Pogg. Ann.,” 1872, vol. 145, p. 520.
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360 MR. C. GODFREY ON THE APPLICATION OF FOURIER’S

not arouse the natural vibrations of the molecule. He held that the motion of the
molecule would be mainly in the mean period of the incident light. This conclusion
we take to be erroneous.

§ 65. SELLMEIER does not adopt the Fourier method; he builds up the incident
light by means of a great number of finite superimposed trains of simple waves, all
having the same phase and period, but of amplitudes, durations, and positions so
adjusted as to give the actual fluctuation of amplitude which is present in the
resultant motion. In passing, it may be noticed that this arrangement will give no
irregularity of phase in the light motion; whereas we have shown that such
regularity will generally be present. The defect may be remedied by removing
the condition that the component trains shall be of the same phase; but this con-
sideration will not alter SELLMEIER’S reasoning in any essential.®

SELLMEIER supposes the motion of the vibrator to be free from all damping. We
will show that in this case his conclusion ought to be that the natural periods of
the vibrator become continually more and more prominent without limit.

§ 66. His reasoning is as follows. Each new train of waves, as it strikes the
vibrator, arouses :—

i. a vibration in the period of the incident light (forced),
il. a vibration in the period proper to the vibrator (natural).

The forced vibration (i) will be of the same phase as the exciting train, and of
amplitude proportional to that of the said train. The natural vibration will
generally have an amplitude of the same order; its phase will, however, be
different. ‘

§ 67. The motion of the vibrator at any time results from the superposition of all
the vibrations previously started. It will be partly forced and partly natural.”
The forced vibrations at any instant will clearly differ from the incident motion at
that instant by a numerical factor only.

The natural vibration, on the other hand, is compounded of members, whose phases
are practically fortuitous. This is easily seen as follows. The phase of natural
vibration aroused by the beginning of a new train depends upon the point of time
at which this event takes place. The difference of a fraction of a period in the
position of this point of time produces a finite change in the phase of the natural
vibration aroused. But, in building up the slowly varying vibration by means of
simple trains, the instant at which each start is, to a few periods, immaterial.

§ 68. SeELLMEIER concludes from this that the natural vibration will be insignifi-
cant compared with the forced vibration. This mistake arises from the fact that

* Tt will be convenient to get rid of the endings of these trains. This we may do by supposing that a
train, once started, is unending ; and by introducing a train of equal amplitude and opposite phase, whose
beginning is so fixed as to extinguish the former train at the right moment. By this arrangement we shall
only have to deal with beginnings.


http://rsta.royalsocietypublishing.org/

i \
I \

a4
A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

DOUBLE INTEGRALS TO OPTICAL PROBLEMS. 361

he really considers the effect of only a single waxing and waning of the incident
light. Tt is true that, on the average, the amplitude of the sum of a large number
of vectors of random phase is small compared with the sum of the amplitudes.
At the same time the energy is, on the average, equal to the sum of the component
energies. In the present case the right deduction is, that the energy of the natural
vibration will vary with the number of the component vibrations ; in other words,
will vary as the time elapsed since the light began to act. It will become greater
without limit. It is easily seen from SELLMEIER’S analysis that there is no tendency
for the natural vibrations excited by successive fluctuation to counteract one another.
As regards the forced vibrations, on the other hand, the phases are, so to speak,
arranged so that there shall be no accumulation of energy.

§ 69. For a frictionless vibrator, then, common homogeneous light will give a
continually-increasing motion in the natural mode; this feature being entirely due
to the irregularities. ‘

But if there were a friction, however small, the motion would be prevented from
mounting up indefinitely. The vibrations started by the component trains would
not persist ; in fact we may expect to find that the natural vibration settles down to
a definite state, depending on the damping and the nature of the irregularities.

§ 70. The whole of this matter becomes quite simple on the application of Fourier.
Let us first try to solve

o0

&+ pa = joR cos (ut + P)du.

We are tempted to take for solution

j( Rcos (ut + ) du
0

PP —

This expression, however, has no definite value. The integrand involves an
infinity at u = p; furthermore, the infinity is of such a nature that the integral

p—e ®

A, +]
0 pte
depends upon e/e’.

The above integral, in fact, is not a solution of the equation. We are forced to
include a frictional term in the equation. But this corresponds to the actual pro-
perties of the vibrator; we have shown that, but for damping, the natural vibration
would continually increase ; a state of things unknown among the observed effects
of light.

§ 71. On page 336 it has been shown that light of composition [R*dw will excite
vibration of composition

[ l_{-fdu
TP — ) + 4wt
VOL. CXCV.—A. 3 A
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362 APPLICATION OF FOURIER'S DOUBLE INTEGRALS TO OPTICAL PROBLEMS.

For mnearly homogeneous light, of period ;, R is small if 54_]_;9 is finite. The
/ (

integrand 1s therefore unimportant, except for values of u

. ; 1
L near to ¢, where we may neglect &, and use 5

P =

j‘RQdu,

ii. near to p, where the emission is practically 4i)°[fc5+1:€2;li e

It the light emitted from the vibrator is analysed by a spectroscope, theoretically a
spectrum of two lines should be revealed; the lines being at frequencies p and g.
Let d be the half-width of the bright line in the incident light; then d will also be
the half-width of the ¢ line in the emitted light.

The total intensity of the ¢ line in the emitted light is therefore of order
Rid/p*.

The half-width of the p line will be «; the total intensity of the p line is of
order R? /kp®.

The ratio of these intensities is

by R e d
Ep R p p’

Now R¥ R} is great, the incident light at p being by hypothesis invisible.  On the
other hand «/p aud d/p are both small. 1t therefore appears that, so far as the
theory of the vibrator carries us, the natural vibration may be as prominent as the
forced vibrator; the natural vibration varying inversely as the index of damping.
Whether or no it is strong enough to be visible, depends upon the spectrum of the
incident light and the constants of the vibrator.
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